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Summary
• Lessons learned  

• 1967: the discovery of Gamma Ray Bursts 
• The Interplanetary Network (IPN) 
• CGRO/BATSE, Fermi/GBM 
• 1997: yes, GRB have cosmological distances (and huge L)  

• Today challenges and opportunities: two revolutions: 
• Multimessenger astrophysics 
• Space 4.0 

• HERMES: a coming breakthrough
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Modularity —> improved performances 

First 6 Vela equipped 
with X-ray and γ-ray 
detectors with limited 
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IPN
First IPN 1976  
4-6 spacecrafts. 
Baseline ~ 1 AU 

Second IPN ~1990 
PVO, Ulysses, CGRO, 
Wind

Third IPN 2000 
~ 20 spacecrafts

Localisations: arcmin-deg 
Main disadvantage: long data 
acquisition ~days
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GRB970228
Detected and localised to a 
several arcmin by BSAX/WFC

Satellite repointed and field 
observed with X-ray 
telescopes 8hr after the event

28/02/97 WHT 08/03/97

OT OT

Discovery of first X-ray 
afterglow. <1arcmin 
position disseminated

Discovery of first optical 
afterglow

WFC
MECS

z=0.695!
LIso~1052 

erg/s



Lessons learned

Vela satellites, IPN, BeppoSAX, Swift 

Distributed instrument —> arcmin-deg positions 

Modularity —> improved performances  

Prompt arcmin-arcsec positions —> game changer 



The multi-messenger 
revolution Phinney 2009



The multi-messenger 
revolution Phinney 2009



The multi-messenger 
revolution
Is NS-NS & BH-NS coalescence the 
engine of short GRBs? Associations of 
GWEs and SGRBs will tell.

Phinney 2009



The multi-messenger 
revolution
Is NS-NS & BH-NS coalescence the 
engine of short GRBs? Associations of 
GWEs and SGRBs will tell.

Are GRBs powered by BH accretion 
or magnetars? 
GW detections provide mass of final 
compact object.

Phinney 2009



The multi-messenger 
revolution
Is NS-NS & BH-NS coalescence the 
engine of short GRBs? Associations of 
GWEs and SGRBs will tell.

Are GRBs powered by BH accretion 
or magnetars? 
GW detections provide mass of final 
compact object.

Which are the GRB, outflows and 
afterglows opening angles?  
GW detections provide system 
inclination.

Phinney 2009



The multi-messenger 
revolution
Is NS-NS & BH-NS coalescence the 
engine of short GRBs? Associations of 
GWEs and SGRBs will tell.

Are GRBs powered by BH accretion 
or magnetars? 
GW detections provide mass of final 
compact object.

Which are the GRB, outflows and 
afterglows opening angles?  
GW detections provide system 
inclination.

Which are the galaxy environments 
where coalescing NS-NS, BH-NS and 
BH-BH are found?                  
Identification of the GWE host galaxy 
will tell

Phinney 2009



The multi-messenger 
revolution
Is NS-NS & BH-NS coalescence the 
engine of short GRBs? Associations of 
GWEs and SGRBs will tell.

Are GRBs powered by BH accretion 
or magnetars? 
GW detections provide mass of final 
compact object.

Which are the GRB, outflows and 
afterglows opening angles?  
GW detections provide system 
inclination.

Which are the galaxy environments 
where coalescing NS-NS, BH-NS and 
BH-BH are found?                  
Identification of the GWE host galaxy 
will tell

How some stars explode as SNe?         
GW will provide core dynamics, EM 
will provide explosion type, 
nucleosynthesis,  BH vs NS remnant

Phinney 2009
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The multimessenger 
revolution

Advanced Ligo/Virgo provide 
position with accuracy  
~ tens deg

BH-BH coalescence: 
>Gpc horizon 
no expected EM counterpart 
(even more exciting if one is 
found…)

NS-NS and BH-NS 
coalescence: 
100-200 Mpc horizon 
GRB, cocoon, kilonova..

Large volumes difficult to 
survey at optical λ.

Tens/hundreds/thousands 
optical transients.

Best strategy:                       
~ all sky prompt search for 
transients at high energies. 
Negligible probability to find 
an uncorrelated HEA 
transient at the time of GWE
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Mission concept

HERMES constellation of cubesat 

2016: ASI funds for detector R&D 
2018: MIUR funds for pathfinder 
(Progetti premiali  2015) 
2018 H2020 Space-SCI-20 project 

2018 ASI internal proposal 

Disruptive technologies: cheap, underperforming, but producing 
high impact. Distributed instrument, tens/hundreds of simple units
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Why HERMES now

Modularity: 
• Avoid single point failures, improve hardware 
• Pathfinder 

Open μsec - msec window:
• Accurate positions 
• QG tests

Limited cost and quick development
• COTS + in-house components  
• Trend in cost reduction of manufacturing and launching QS

Breakthrough scientific case: 
• EM of GWE
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HERMES-SP goals 
1.join the multimessenger revolution by 

providing a first mini-constellation  for GRB 
localizations

2.develop miniaturized payload technology for 
breakthrough science

3.demonstrate COTS applicability to challenging 
missions, contribute to Space 4.0 goals

4.push and prepare for a high reliability, large 
constellations
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Experiment concept
1. Measure GRB positions through delays 

between photons arrival times: 
σPos = (σ2CCF+σsys2)0.5 x c / <B> / (N −1− 2)0.5

cΔ
t

Ba
se

lin
e

GRB front
+

=
σCCF~10μs 
σPos~10arcsec 
if <B>~7000km, N~100
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>2020 GRB all 
sky monitor 

GRB targets for CTA

Fast repositioning (tens of secons) 
FOV ~ 4.5° at tens of GeV 
~1000 deg2 in divergent pointing mode

Jet Lorenz factor
Synchrotron vs. Inverse Compton radiation
B field strength and configuration
UHECR
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>2030 GRB all 
sky monitor 

GRB targets for Athena

Can we probe the rirst PopIII 
stars?                                        
High-z GRBs are the best tracer

Where are the missing baryons in 
the local Universe? Warm IGM? 
Bright GRB to X-raying IGM
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How to promptly localise a GRB 
prompt event?

How to construct a GRB 
engine?

Which is the ultimate granular 
structure of space-time?                
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inner engine
BH accretion, 
internal shocks

Magnetars
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Experiment concept
2. Add the signal from 

different units 
Total collecting area 50-100-
cm2 x 100-200 = 0.5-2 m2

Transient fine (subμs-ms) 
temporal structure  
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GRB inner engine
2 shells ejected at t1, t2 , speed 
Γ1, Γ2=aΓ1 will collide at R~2Γ2L

Δt~L/c~R/2cΓ2     R~2Γ2cΔt       
R~(Γ/100)  (Δt/1ms) 6×1011cm

γ-rays from collision reach 
observer at the same time of 
hypothetical γ-rays emitted at t2

Observed light curves reproduce 
activity of inner engine            
(Nakar-Piran 2002)

R

L=cΔt

θ=1/Γ

Morsony, Lazzati, Begelman 2010 
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Space-time structure 
Granular ST determines a 
dispersion relation:            
c2p2=E2[1±(E/EQG)α]         
EQG=η1019 GeV

v=dE/dp=c[1±(E/EQG)α]                
Δt~±(ΔE/EQG)α×D(z)/c

Δt/ΔE~30msec/GeV~3μs/100keV          
EQG~EPlanck, α=1, z~1

Transverse effect = blur GRB 
images Amelino-Camelia + 1998
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• Tests with Fermi:                  
single photons                         
rare events (1, or a few): 
GRB090510 z=0.9

• Eobs=29.9GeV,  Eem=56.9GeV

• Δt/ΔE≤1s/30GeV, EQG≥EPlanck, 
α=1

Fermi LAT GRBs 

Abdo+2009
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Hard X-rays GRBs
Bernardini+2017

• Robust test:                                     
use full GRB information (CCF) 
thousands photons                             

• Δt/ΔE~30ms/GeV~3μs/100keV  
EQG~EPlanck, α=1, z~1

• ~1ph/10μs, GRB with subms 
variability, detectors with um 
capability

• Δt/ΔE must scale with D(z) for a given 
EQG  

• Tens/hundreds GRBs: ~10ph/cm2/s 
—> Collecting area ~1m2



Requirements



Requirements
Scientific:



Requirements
Scientific:

Arcmin-arcsec positions of ~a few dozen GRB/yr



Requirements
Scientific:

Arcmin-arcsec positions of ~a few dozen GRB/yr

Prompt(minute) localisation



Requirements
Scientific:

Arcmin-arcsec positions of ~a few dozen GRB/yr

Prompt(minute) localisation

sub-μs timing



Requirements
Scientific:

Arcmin-arcsec positions of ~a few dozen GRB/yr

Prompt(minute) localisation

sub-μs timing

Δt/ΔE~3μs/100keV 30μs/1MeV—> MQG~MPlanck
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Requirements
System:

≈hundreds detectors
single collecting area ≥50cm2

total collecting area  ≥1m2

Energy range 3-10 — 300-1000 keV
Temporal resolution a few hundred ns
Position reconstruction of each satellite < 100m
Absolute time reconstruction <100 ns
Download full burst info in minutes
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Payload
• Scintillator cristal GAGG         

Photo detector, SDD
• 5-300 keV (3-1000 keV)
• ≥50 cm2 coll. area
• a few st FOV
• Temporal res. ≤300 nsec
• ~1.8kg

Fuschino+2018 
Evangelista+2018 
Campana+2018
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How many GRBs?

• Long: Fl≥10-5 erg/cm2  
≥8 ph/s/cm2                  
10/yr

• Short: Fl≥10-7 erg/cm2 
≥1-2 ph/s/cm2                
20/yr

Long

Short
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σPos(pathfinder) ~ 2.4 deg if σCCF,σsys~0.001s 
σPos(FC)  ~ 3 arcmin  if σCCF,σsys~0.001s 
Short GRBs without substructure, risetime fraction of second.

σPos = 2.4°[(σCCF2+ σsys2)/(N-3)]0.5

<B>~7000km 
N(pathfinder)~6-8, active simultaneously 4-6 
N(final constellation) ~100, active 50

σPos(pathfinder) ~ 1 arcmin if σCCF, σsys~10usec 
σPos(FC)   <1arcsec if σCCF, σsys~10usec 
Bright GRBs with msec structure
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• INAF, ASI, PoliMi, UniCagliari, UniPalermo, UniUdine, 

UniTrieste, UniPavia, UniFedericoII, UniFerrara, FBK, 
FPM 

• University of Tubingen (Germany) 

• University of Eotvos Budapest, C3S (Hungary) 

• University of Nova Gorica, Skylabs, AALTA (Slovenia) 

• Deimos (Spain)

HERMES is open to ideas and collaboration  
Want to be involved? Send an e-mail 

fabrizio.fiore@inaf.it 
burderi@dsf.unica.it 

mailto:fabrizio.fiore@inaf.it?subject=
mailto:burderi@dsf.unica.it
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If it flies it will never work

If it works it will not see anything!
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Progetto Premiale 2015: HERMES-Techonogic Pathfinder

Main objectives:

1. Detect GRBs with simple payload hosted by a 3U CubeSat

2. Study statistical and systematic errors in the determination of the CCF

• KO May 2018

• CDR+QR T0+15 QM—> PFM1

• AR T0+24 —> PFM2+PFM3

• Launch mid-end 2020 ASI provided 
(VegaC maiden flight or Vega, or other opportunities)
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H2020 SPACE-SCI-20: HERMES-Scientific Pathfinder

• Main objectives:

1. First GRB localization experiment with ≥4 CubeSat

2. Study the systematics associated to the localization

• KO November 2018

• CDR+QR T0+15 QM—> PFM1

• AR T0+24 —> PFM2+PFM3

• Launch 2021 (ASI provided)
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ASI 2019: HERMES - Advanced Scientific Pathfinder

• Main objectives:

1. Nearly all sky coverage 

2. First accurate GRB localization experiment with ≥6 
CubeSat

• Submitted to ASI September 2018

• Launch 2022? (ASI provided)


